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Genome Biology

The double helix is a sheet of paper
that genetic messages can be written upon.

The particular sequence of nucleotides in your
genome, along with your environment and
experiences, shapes who you are:

Physical traits: Height, hair color, skin color; ...
Behavioral traits: Intelligence, Personality, ...
Susceptibility to disease, stress, and toxins

* Response to drug treatments

Finding changes to genome structure can provide
powerful clues to its function.




Genomic Data

-

The instruments provide data, but none of
the answers to any of our questions.

Who will answer them?

How will they do it?

Worldwide capacity exceeds 35 Pbp/year



Domain
Analysis

Machine Learning
classification, modeling,
visualization & data Integration

Algorithmics
Streaming, Sampling, Indexing, Parallel

Compute Systems
CPU, GPU, Distributed, Clouds, Workflows

|O Systems

Hardrives, Networking, Databases, Compression, LIMS

Sensors & Metadata
Sequencers, Microscopy, Imaging, Mass spec, Metadata & Ontologies




System Level Advances
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Optimizing data intensive GPGPU computations for DNA sequence alignment
Trapnell, C, Schatz, MC (2009) Parallel Computing. 35(8-9):429-440.

CloudBurst: Highly Sensitive Read Mapping with MapReduce.
Schatz, MC (2009) Bioinformatics 25:1363-1369.

Design patterns for efficient graph algorithms in MapReduce.
Lin, J., Schatz, MC. (2010) Proceedings of the 8th Workshop on Mining and Learning with Graphs

The DNA Data Deluge
Schatz, MC and Langmead, B (2013) IEEE Spectrum. July, 2013
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Genomic Data Structures

Strings

. . TTGAATTACATG. .

GAA--ACA

Alignment
Narzisi et al. (2014) Nature Methods
Lee & Schatz (2012) Bioinformatics

Autism Genetics
lossifov et al. (2014) Nature
Fang et al. (2014) Genome Medicine

Suffix Trees

Marcus et al. (2014) Bioinformatics
Trapnell & Schatz (2009) Parallel Computing

Microbial Diversity
Donia et al. (201 1) PNAS
Schatz & Phillippy (2012) GigaScience

Graphs

()
0-0-
(@)

String Graphs
Narzisi et al. (2014) Lecture Notes in CS.
Koren et al. (2012) Nature Biotechnology

Plant Biology
Schatz et al. (2014) Genome Biology
Maron et al. (2013) PNAS




Genomics Graphs

I. Error Correction and Assembly
Long Read Single Molecule Sequencing

2. Pan-Genomics
Sequence conservation and divergence
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Genome Complexity
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https://en.wikipedia.org/wiki/Genome_size



Sequence Assembly Problem

e T
|. Shear & Sequence DNA - =

2. Construct assembly graph from overlapping reads

..AGCCTAGGGATGCGCGACACGT

GGATGCGCGACACGTCGCATATCCGGTTTGGTCAACCTCGGACGGAC
CAACCTCGGACGGACCTCAGCGAA..

3. Simplify assembly graph

_ 3 m=

On Algorithmic Complexity of Biomolecular Sequence Assembly Problem
Narzisi, G, Mishra, B, Schatz, MC (2014) Algorithms for Computational Biology. Lecture Notes in Computer Science. Vol. 8542



Assembly Complexity




Counting Eulerian Tours
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Often an astronomical number of possible assemblies
— Value computed by application of the BEST theorem (Hutchinson, 1975)

W(G,t)=(detL){H("u‘1)!}{ 11 a“"’!}_l

ueV (u,w)EE

L = n x n matrix with r-a , along the diagonal and -a,, in entry uv

r, = d*(u)*+ I if u=t, or d*(u) otherwise

a,, = multiplicity of edge from u to v

Assembly Complexity of Prokaryotic Genomes using Short Reads.
Kingsford C, Schatz MC, Pop M (2010) BMC Bioinformatics. | 1:21.



Assembly Complexity
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Assembly Complexity

The advantages of SMRT sequencing
Roberts, R], Carneiro, MO, Schatz, MC (2013) Genome Biology. 14:405



34 Gen Long Read Sequencing

PacBio RS Il
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34 Gen Long Read Sequencing
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Oxford Nanopore MinlON @’

Thumb drive sized sequencer
powered over USB

» Capacity for 512 reads at once

+ Senses DNA by measuring
changes to ion flow
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Nanopore Sequencing
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ONTL COGACTCCGGTTACCCGUGTTGATTTOC TCOGAGOAGGGOC0S
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REF CCOACTCCOGTTACCASCOTTGATTTOCTOSOGCAD00CCG

/

Basecalling currently performed at Amazon with frequent updates to algorithm

Hidden Markov model
Only four options per transition

Pore type = distinct kmer length

Form probabilistic path through
measured slates currents and
transitions

« e.g. Viterbi algorithm

v
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Nanopore Readlengths

noise
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Oxford Nanopore Sequencing at CSHL
30 runs, 267k reads, 122x total coverage
/ Between 11 and 73k reads per run!
Mean flow cell: 50 Mbp in 2 days
Max flow cell: 446Mbp in 2 days

Spike-in

Mean: 5473bp

/

41x over 10kbp

20k
8xover20kb . 146,992bp




1500

1000

Nanopore Alignments

Mean: 6903bp

/

Alignment Statistics (BLASTN)
Mean read length at ~7kbp
Shearing targeted 10kbp

70k reads align (32%)

40x coverage

13.8x over 10kbp

1.8 20kb
X over Max: 50,900bp
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Nanopore Accuracy

Alignment Quality (BLASTN)
Of reads that align, average ~64% identity
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“2D base-calling” improves to ~70%

B 1D mean: 64%
B 2D mean: 70%
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Error Correction Methods

Quake

Word Analysis
of lllumina Reads

Kelly, Schatz, Salzberg (2010)
Genome Biology. | I:R116
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Error Correction Methods

Quake PacBioToCA
& ECTools
= ]
(; 2‘0 41) E;O 8‘0
Word Analysis Hybrid Correction
of lllumina Reads Of PacBio using lllumina
Kelly, Schatz, Salzberg (2010) Koren, Schatz, et al (2012)

Genome Biology. | I:R116 Nature Biotechnology. 30:693—-700




NanoCorr: Nanopore-lllumina

Hybrid Error Correction

https://github.com/jgurtowski/nanocorr

|. BLAST Miseq reads to all raw Oxford
Nanopore reads

2. Select non-repetitive alighments
o First pass scans to remove “contained”
alignments
o0 Second pass uses Dynamic
Programming (LIS) to select set of high-
identity alignments with minimal
overlaps

3. Compute consensus of each Oxford
Nanopore read
o State machine of most commonly
observed base at each position in read

10000 15000 20000 25000 30000

5000

0

Post-correction %ID
Mean: ~97%
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Oxford Nanopore Sequencing and de novo Assembly of a Eukaryotic Genome
Goodwin, S, Gurtowski, ] et al. (2015) bioRxiv doi: http://dx.doi.org/10.1101/013490




conbg length

Long Read Assembly

S288C Reference sequence
* [2.IMbp; 16 chromo + mitochondria; N50: 924kbp
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0 Nanopore contigs (NS0: 472kbp)
£ Bumina contigs (NS0: 58kbp)
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Genomic Futures?




iGenomics: Mobile Sequence Analysis
Aspyn Palatnick, Elodie Ghedin, Michael Schatz
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Pos: 825 Ref: C Mut: T

resistance to the neuraminidase inhibitors

Pos: 773 Ref: T Mut: C

resistance to the adamantanes

Pos: 785 Ref: C Mut: A

resistance to the adamantanes

X

The worlds first genomics analysis
app for iOS devices

BWT + Dynamic Programming + Ul

First application:

« Handheld diagnostics and
therapeutic recommendations for

influenza infections

« Coming soon to the App Store

Future applications
* Pathogen detection

* Food safety

* Biomarkers

* etc..




Genomics Graphs

I. Error Correction and Assembly
Long Read Single Molecule Sequencing

2. Pan-Genomics
Sequence conservation and divergence
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Pan-Genome Alignment & Assembly

O O m >

Time to start considering problems Pan-genome colored de Bruijn graph
for which N complete genomes is the * Encodes all the sequence
input to study the “pan-genome” relationships between the genomes
* Available today for many microbial * How well conserved is a given
species, near future for higher sequence!
eukaryotes *  What are the pan-genome

network properties?

SplitMEM: A graphical algorithm for pan-genome analysis with suffix skips
Marcus, S, Lee, H, Schatz, MC (2014) Bioinformatics. doi: 10.1093/bioinformatics/btu756



Graphical pan-genome analysis

Colored de Bruijn graph
* Node for each distinct kmer
* Directed edge connects consecutive kmers

* Nodes overlap by k-1 bp

) .
AGAAGTCC @

ATAAGTTA o>
L ) <>
<>

L CC g
TC 2
@6

L

de Bruijn, 1946
|dury and Waterman, 1995
Pevzner, Tang,Waterman, 2001



Graphical pan-genome analysis

Colored de Bruijn graph
* Node for each distinct kmer
* Directed edge connects consecutive kmers

* Nodes overlap by k-1 bp

a I
AGAAGTCC | AGAA
A

Ge>
ATAAGTTA — o
N y Q> a

More specifically:
*  We aim to build the compressed de Bruijn graph as quickly as possible without
considering every distinct kmer




Suffix Trees

Elegant, widely used full text index

 Rooted, directed tree with a leaf s |2
. . ctsf $ ALl S h C)
corresponding to each suffix 5 o o
v 3 A°75] =
. . . Q)
* Path from root to leaf i spells suffix S[i ...n]. Z 5 %N
o
o W
* Each internal node has at least two distinct suf, 3
. . ¢ >
children except possibly the root SUE ok
* Special suffix links navigate between internal S = banana$

nodes corresponding to consecutive substrings
(xxX -> &) without returning to root

Many important search problems can be solved

in linear time and space

Linear pattern matching algorithms.
Weiner, P. (1973) 14th Annual IEEE Symposium on Switching and Automata Theory.

On-line Construction of Suffix Trees
Ukkonen, E. (1995) Algorithmica.



Maximal Exact Matches (MEMs)

Definition:
A MEM is an exact match within a sequence that cannot be
extended left or right without introducing a mismatch.

XGATTACAW... ..YGATTACAZ..

Key Properties:

e MEMs are internal nodes in the suffix tree that have left-
diverse descendants.

 Have descendant leaves that represent suffixes with different
characters preceding them

* Linear-time traversal of suffix tree to identify MEMs.



MEMs to compressed
de Bruijn Graphs
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Overlapping MEMs

TEECAT CGECAACCATG

TG-CGCCAA-/.
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SplitMEM Sketch

|. Find nodes representing repeated sequences
|. Build suffix tree of genome
2. Mark internal nodes that are MEMs, length = k

3. Preprocess suffix tree for LMA queries

4. Determine repeat-nodes of compressed de
Bruijn graph by decomposing MEMs and
extracting overlapping components, length = k

2. Finalize graph with nodes and edges of unique
sequences



Split MEMs to de Bruijn Graph

oGy -

- Xyzaf

Find deepest MEM in suffix tree.



Split MEMs to de Bruijn Graph

oGy -

Xyzof

Traverse suffix link.
Look for MEM as ancestor.



Split MEMs to de Bruijn Graph

Xyzof

Traverse suffix link.
Look for MEM as ancestor.



Split MEMs to de Bruijn Graph

oGy -

Xyzof

Traverse suffix link.
Look for MEM as ancestor.



Split MEMs to de Bruijn Graph

iy -

Found MEM as ancestor. Decompose.
Remove embedded MEM (suffix links). Find next embedded MEM.



Suffix Skips

Genome: babab

Suffix skips 0 | Suffix skips 1 | Suffix skips 2

(dist = 1; suffix links) (dist=2) (dist=4)

Skip ¢ characters in log(c) steps instead of c suffix links

* Pointer jumping technique: n->ss[i] = n->ssJi-1]->ss][i-1]



Microbial Pan-Genomes

E. coli (62) and B. anthracis (9) pan-genome analysis

Analyzed all available strains in Genbank

Space is linear in the number of genomes

Time is O(n log g) where g is the length of the longest genome
* Linear time for most practical applications

Many possible applications:
* ldentifying “core” genes present in all strains
* Characterizing highly variable regions
* Cataloging sequences shared by pathogenic varieties
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The Rise of Pan-Genomics

Human Pan-Genomics

*  We now have the capacity to consider the
pan-genome structure of the human
population and other high value species

* Already the current human reference genome
has “alternate” sequence paths representing
major differences between the different
ethnicities (haplotype groups)

* However, virtually none of existing genomics algorithms operate on reference
graphs, creating a major opportunity for research:
* New and interesting CS problems
* Online graph construction, searching, annotating, visualizing...
* New and interesting biology
* Detailed analysis of mutation, disease, and evolution

Extending reference assembly models
Church et al (2015) Genome Biology. 16:13 doi:10.1186/s13059-015-0587-3
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Interfacing CS & Biology W rastoms

of ENGINEERING

Theory & Programming Languages
* How can we efficiently search & analyze genomic data?
* How do natural systems use abstraction or recursive processing?

Systems
* How do we scale to exascale or zettascale genomic data?

Information Security
* How do we balance the benefits of sharing genomic data with potential privacy abuses?

Machine Learning & Data Intensive Computing
* How do we learn from high dimensional biological data?

Language & Speech Processing
* How do we recognize important features of sequences and other bio-molecular data?

Robotics,Vision & Graphics
* How do we integrate and model molecular with behavioral data?



Understanding Genome
Structure & Function |
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Genomics is a rich field for computer science research ',

! '

— Opportunities across the entire data science spectrum from B %
L/

Sequencing Algorithmics
— Long reads and other sequencing technologies are giving us great
power to look into genomes across the tree of life
— With these advances, expect the rise of graph-based pan-genomics
giving us new insights into the origins of disease, the processes of 8 :
development, and the forces of evolution » '{'
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Genome Informatics

Janet Kelso, Daniel MacArthur, Michael Schatz
Oct 28 - 31,2015

Thank you

http://schatzlab.cshl.edu
@mike_schatz




